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Contour dynamics is used to compute the two-dimensional (f-plane) motion of an
initially circularly symmetric barotropic eddy with piecewise-uniform vorticity as it
is advected around a circular obstacle by a uniform upstream current. For grazing
incidence of this ‘shielded’ eddy (compensating positive and negative vorticity) the
main effect of the vortex images (inside the obstacle) is to change the speed of those
particles in the outer portion of the eddy that are closest to the obstacle; a lesser
velocity is induced on the oppositely signed vortices near the eddy centre. The result
is a systematic separation of the centroids of the ± vortices in the eddy, and the eddy
emerges far downstream with an invariant dipole moment (m = 1 azimuthal mode).
This causes the eddy to move with a constant velocity V normal to the uniform
basic flow. The ratio of the numerically computed V to the accompanying far-field
dipole moment agrees with a previous analytical theory for a completely isolated eddy
subjected to a small-amplitude m = 1 initial disturbance. The scattering effect might
be realizable in a rotating homogeneous fluid by translating a cylinder relative to an
otherwise stationary eddy. Application to a density-stratified model is suggested.

1. Introduction
If zI = x+iy denotes the complex position vector of the Ith point vortex of strength

2πGI in an inviscid and unbounded two-dimensional flow, then it follows from the
equation of motion for dzI/dt that the ‘dipole moment’, defined to be proportional to

N∑
1

GIzI (t),

is time independent (Saffman 1992). Also well known is the generalization for dis-
tributed vorticity ω(x, y, t) in a ‘compact eddy’ where the vector invariant is∫∫

dx dy(ωx,ωy),

and the integration extends over the entire two-dimensional f-plane. The simplest case
for further consideration consists of a piecewise-uniform-vorticity eddy, consisting of
an inner domain with uniform vorticity ω3 and an area A3; this is bounded by an
interfacial contour (C3(t)) whose centroid is located at (x3(t), y3(t)). Outside C3 there
is an annular domain of vorticity ω2 in an area A2−A3 which is bounded by a closed
contour C2(t) whose centroid is at (x2(t), y2(t)); outside C2 the vorticity vanishes. The
‘shielding’ requirement is ω3A3 + ω2(A2 − A3) = 0, and the invariant dipole moment
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therefore has the x-component

ω3A3x3 + ω2[x2A2 − x3A3] = ω2A2(x2 − x3).

Thus we see that the distance

D = (Dx, Dy) = (x2 − x3, y2 − y3) (1.1)

between the centroids is time invariant, in the absence of external forces, such as may
be provided by rigid boundaries or by the latitudinal variation of the Coriolis force.

When such forces are absent, then a ‘small’ initial Dx will cause this ‘almost’
circularly symmetric eddy to propagate in the +y-direction with speed

V = 1
2
Dxω2, (1.2)

and for a time such that the eddy is able to traverse many diameters (Stern &
Radko 1998, equation (2.2)). This reference also examines the collision of such a self-
propagating eddy with the interface bounding a semi-infinite laminar shear flow with
piecewise-uniform vorticity. Under certain conditions the dipole moment of the eddy
enables it to completely penetrate the barrier provided by the vorticity discontinuity
at the interface of the shear flow. This suggests the importance of the small dipole
moment for mixing an eddy with a current having different properties.

The purpose of this paper is to show how the foregoing (1.1) f-plane invariant
can be generated, i.e. how an initially circularly symmetric eddy can acquire a dipole
moment as a result of the pressure exerted on a topographic obstacle, such as a
circular cylinder of radius R centred at x = 0 = y. Far upstream (x = −∞) this
eddy with its centre at x = −∞, y = y3(0) is advected towards the obstacle by the
uniform velocity U of a basic current. Further downstream the irrotational U-flow
around the obstacle distorts the interfaces (C2, C3), and ‘activates’ the image vorticies
inside the obstacle. The main dynamical effect of the latter occurs when C2 and
its proximate particles are sufficiently close to the obstacle, so that their velocity is
significantly modified by the closeness of images. Since the images have less effect on
the more distant C3 contour, we expect the centroids of C2 and C3 to separate, thereby
producing a finite value of (1.1). The main question to be answered is whether the
effect is reversible, or whether it causes a finite D to appear far downstream from the
obstacle. In the latter case the eddy will have a constant propagation velocity (1.2)
normal to the basic flow. Attention will be mainly confined to the ‘weak scattering’
regime, wherein the magnitude of the upstream ordinate of the eddy centre is such
that C2 ‘grazes’ the obstacle and emerges far downstream as a simply connected
round curve (i.e. no ‘topological change’), but with a finite scattering angle relative
to U. The ‘strong’ interaction regime, on the other hand is defined by the presence
of a topological change such as a bifurcation into two essentially separated eddies,
or such as results from a ‘head-on’ collision of C2 with the obstacle. The subsequent
evolution of this case is beyond our scope, and at the time when this effect occurs
our contour dynamical calculations (§ 4) are terminated.

From an oceanographic point of view, however, both regimes are of interest, as
appears in the Richardson & Tychensky (1998) observations of ‘Meddies’ propagating
southwestward from their origin on the Iberian continental slope. Some of these come
into close contact with mid-Atlantic topography, and either change their propagation
direction (weak scattering), or become disrupted into smaller scale structures (strong
interaction). If the latter speculation of Richardson & Tychensky (1998) is correct, it
has important implications for mixing the high-salinity Meddies in the much larger
water mass in which they are embedded. The question then arises as to the relevance
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of our pure, barotropic considerations to the ocean, which is vertically stratified in
density. The simplest baroclinic case is a two-layer quasi-geostrophic model, and we
show (§ 5) how the foregoing barotropic centroid invariant generalizes to that case. It
will be suggested that a sea mount can cause an initially symmetric eddy to acquire
such an invariant. See Beismann, Käse & Lutejeharms (1999) for the effect of a
uniform north–south ridge on a westward-propagating β-plane eddy.

The simpler barotropic problem considered herein is also of interest because it
may be realizable in a laboratory experiment with a rotating fluid of uniform density.
Compact eddies have been produced by S. Vorapayev (1999, personal communica-
tion) and Carnevale, Kloosterziel & van Heijst (1991), and the latter have studied
numerically, as well as experimentally, the evolution of an eddy on the β-plane. The
question addressed here is what happens when a rigid cylinder on the f-plane is
moved towards an initially circularly symmetric eddy with no net circulation.

The simplest model (§ 2) which elucidates this topographic effect consists of an
eddy composed of only three point vortices, with no net circulation, and such that
in the absence of rigid boundaries it is in a stable rotary equilibrium state (Rott
1989). When a circular obstacle and a basic current are added, a relatively simple
point vortex calculation gives the positions of the three vortices as they are advected
around the obstacle, and as they emerge far downstream.

The problem is generalized in § 3, where we consider an eddy with piecewise-
uniform vorticity. The simplest version of this occurs when the aforementioned inner
C3 contour collapses to a point (x3, y3(t)) surrounded by the distributed vorticity inside
C2. In order to compute the evolution of C2, and x3(t), y3(t), it is necessary to obtain
the velocities induced by the vortex images. The Green’s function for these images is,
however, not Galilean invariant, and therefore does not allow a reduction of the two-
dimensional problem to a one-dimensional calculation (as in conventional contour
dynamics). Consequently the numerics in § 3 require a two-dimensional integration
over the entire area bounded by C2 in order to obtain the velocity induced by their
images. The results of these calculations are discussed in § 4, and summarized in
the conclusion. In § 5 the aforementioned (barotropic) centroid invariance theorem is
generalized to a baroclinic model.

2. A simple explanation of the weak scattering effect
Consider a shielded eddy consisting of a central cyclonic vortex, with non-

dimensional strength G3 = + 2
3

(multiplied by 2π), initially separated by unit distance

from two co-linear anticyclones whose strength is G1 = G2 = − 1
3

(multiplied by 2π).
The respective positions at t = 0 of this special eddy are z1(0) = x1 + iy1, z2(0) =
z1(0) + 2i, z3(0) = (z1 + z2)/2. When U = 0 there is an elementary stable solution
(Rott 1989) in which the two negative satellites merely rotate counterclockwise with
angular velocity 3

2
about a fixed z3.

Now suppose there is a circular obstacle of non-dimensional radius R centred at
x = 0, y = 0, and at x = −∞ there is a non-dimensional uniform basic current U. This
irrotational flow will advect each point vortex towards and around the circle. Each
vortex (I = 1, 2, 3) is also directly influenced by the remaining two, and indirectly
influenced by all three image vortices inside the circular obstacle. The sum of these
three influences gives the well known equations of motion:

dzI
dt

=
∑
J 6=I

iGj
z∗I − z∗j −

∑ iGj
z∗I − (R2/zJ)

+U[1− (R2/(z∗J)
2)], (2.1)
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where the asterisk denotes a complex conjugate. Note that vanishing circulation
around the circular obstacle is ensured by the compensating strength of the three
images. Many different and intricate trajectories can be obtained, depending on the
(U,R) parameter and on y3(0). The example chosen below best illustrates the weak
scattering effect which occurs (§ 4) for distributed vortices.

The trajectories (figure 1) of the three vortices for R = 1, U = 0.2, x3(0) = −4,
y1(0) = 0.8 were obtained using a second-order Runge–Kutta integration with a time
step = 0.001. After flowing around the obstacle they emerge with a finite ‘scattering
angle’ relative to the direction of the basic flow. This effect is due to the images
which become important when the circular obstacle is close to one (z1 or z2) of the
negative satellites, in which case its azimuthal velocity is retarded by the closeness of
its image. The image effect on the central vortex (z3) is much less because of its much
larger separation from the circle, and thus the centroid [(z1 + z2)/2] of the negative
vortices lags slightly behind z3 as the entire group flows around the obstacle. Figure
1(c) shows that the x-component of the dipole moment:∑

GIxI , (2.2)

increases systematically from its upstream value (zero) to an invariant positive down-
stream (x� R) value. The y-component of the dipole moment (figure 1c) is, however,
much smaller. Also note that no dipole moment forms when −x3 is as large as 4.0.

3. Formulation of the contour dynamical equations for piecewise-uniform
vorticity

Let the centre of the circular obstacle with radius R be at the coordinate origin
(x = 0, y = 0), and consider a circularly symmetric shielded (no net vorticity) eddy
initially in stable equilibrium at x = −∞. Such is the case for a piecewise-uniform
vorticity distribution (Flierl 1988), in which the radius of the inner interface (C3)
is less than half the radius of the outer interface (C2). For maximum simplicity, in
that which follows, the inner domain is taken to be a point vortex located at (x3(t),
y3(t)), with G now denoting its strength (integrated vorticity). This point vortex is
surrounded by uniform vorticity ω = −G/A, where A is the area bounded by C2(t),
and [x(t), y(t)] is its centroid. A uniform current at x = −∞ advects the initially
symmetric eddy towards the obstacle.

The total vector velocity u+ iv at any point (x, y) can be expressed as the sum of
several components. As in (2.1) one of these:

Ua + iVa = U(1− (R2/(x− iy)2)) (3.1)

is due to the irrotational flow of the basic current around the obstacle. Another
component comes from the point vortex at z3 = x3 + iy3 and from its image at
z4 = x4 + iy4:

U3 + iV3 =
iG/2π

(x− x3)− i(y − y3)
, (3.2a)

U4 + iV4 =
−iG/2π

(x− x4)− i(y − y4)
, (3.2b)

where

z4 =
R2

z∗3
≡ R2

x3 − iy3

. (3.2c)
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Figure 1. (a) Three compensating point vortices are advected by a uniform upstream flow towards
a circular obstacle, where they are deflected by their images and by the irrotational flow around
the obstacle .The central vortex z3 is positive and its strength (G3) is twice that of the negative
satellites. U = 0.2, R = 1 (see text). (b) The long-time behaviour of the central vortex (compare
with propagating three-vortex solution in figure 14 of Rott 1989) shows that a large and persistent
‘scattering angle’ occurs. (c) The downstream evolution of the dipole moment (ordinate); the
x-component defined by (2.2) clearly predominates. Note that no dipole moment is generated near
the starting position x = −4 ≈ −∞.
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Conventional contour dynamics enables us to express the direct influence (Ued + iVed)
of all the ω-vortices inside the area bounded by C2 by a one-dimensional integral:

Ued + iVed =
ω

4π

∮
C2

(dxJ + idyJ) ln[(x− xJ)2 + (y − yJ)2]. (3.3)

We evaluated this numerically using the same code as in Stern & Radko (1998),
wherein the propagation speed of an isolated eddy with an assumed small dipole
moment was computed.

The final and most complicated component (UIM + iVIM ) is the velocity produced
by the images of the ω-vortices. The double integral over A of the Green’s function
cannot, as seen below, be reduced to a one-dimensional contour integral. From the
streamfunction for a vortex element ω dξ dη in A we obtain

UIM + iVIM =
ω

4π

(
i
∂

∂x
− ∂

∂y

)∫∫
A

dξ dη ln

∣∣∣∣z − R2

ζ∗

∣∣∣∣,
where ζ∗ = ξ − iη. Simplification then yields

UIM + iVIM =
ω

2π

∫∫
A

dξ dη
(x+ a)i− (y + b)

(x+ a)2 + (y + b)2
, (3.4)

where

a = − R2ξ

ξ2 + η2
, b = − R2η

ξ2 + η2
. (3.5)

The sum of (3.5), (3.1)–(3.3) evaluated at Lagrangian contour points z2 on C2 (with
due consideration for the logarithmic singularity) gives dz2/dt; dz3/dt is obtained
from the velocity components at z3 = x3 + iy3.

The double spatial integration (3.4) was performed by starting with successive
points (ξJ, yJ) on C2, where ξJ is the abscissa and yJ(ξJ) is the ordinate relative to the
centroid y. If yJ > 0 the η-integration proceeds downwards to η = 0, and if yJ < 0
the η-integration is upwards to η = 0. This procedure allows the area covered at each
of the C2 points to be included in the same simple way. We then sum over ξJ to
obtain the value of (3.4) at any point (x, y) on C2, and also at x3(t), y3(t). To test
the algorithm we set U = 0, and placed the interface (C2) of the circularly symmetric
eddy outside the obstacle. This should not disturb the equilibrium of the shielded
eddy, as was verified by showing that the numerical value (3.4) of the ω-images at
z = z3 is equal and opposite to that (3.2b) due to the point vortex image.

In the initial state (t = 0) of the following calculations (U > 0) 80 Lagrangian
points were uniformly disturbed around C2. At t > 0 a point was deleted (inserted)
if it got too close to (far apart from) a neighbour. Such ‘contour surgery’ introduces
small changes in area (A) in each time step, and, in order to maintain zero net
circulation, a (small) compensation in G was made such that G(t) = −ωA(t) at all
time (see Stern & Radko (1998) where a similar procedure was used). A second-order
Runge–Kutta scheme was employed with a time step such that the eddy advanced a
distance of 0.02 radii in this interval.

4. Results of contour dynamical calculations
At early times (when −x3 � R) the compensating vortices (±) inside C2 induce

negligible net exterior velocity; the dominant effect on the eddy is merely a uniform
downstream advection, followed by the straining associated with the irrotational basic
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Figure 2. A cyclonically rotating eddy with piecewise-uniform vorticity, is advected around a
circular obstacle (thick curve of radius R = 2) centred at x = 0, y = 0. At t = 0 (not shown) the
centroid of the eddy contour (C2) and the central point vortex (G = −πω) are at x = −4, y = 2,
and the basic current is U = 0.2 (see text). The C2 contours at time t = 16 and t = 50 are shown
here.

flow (U) around the circle of radius R. As in § 2, dynamically significant modifications
occur when a segment of C2(t) (and its neighbouring ω-vortices) comes ‘close’ to the
circular obstacle. The corresponding vortex images then have a dominant effect on
those close vortices, and alter the velocity with which those vortices move around the
obstacle. Since the total image effect on the more distant point vortex (x3, y3) is much
less, it will separate from the C2-centroid by a vector distance [x3(t)− x̄(t), y3(t)− ȳ(t)].
For convenience this is defined as the dipole moment in that which follows.

The equations of motion in § 3 were non-dimensionalized by taking C2(0) to be
a circle of unit radius (R = 1) which bounds non-dimensional vorticity ω = −2.
Initially the compensating point vortex (x3, y3) of strength G = −πω coincided with
the centroid of C2[x3(0) = x(0)]. Although ω < 0 corresponds to a cyclonically
rotating eddy, there is no loss of generality since the solution for an anticyclone may
be obtained from the class of cyclonic solutions by merely changing the sign of [y3(0),
y(0), ω,G]. Note that a cyclonic eddy incident on the left-hand side of the obstacle
(looking downstream) behaves differently from a right-hand arrival, because in each
case the ‘close’ images induce azimuthal velocities on C2 which are in a different
sense relative to direction of the basic current (i.e. (3.1)). Each right-hand anticyclonic
arrival is, as mentioned above, isomorphic with a left-hand cyclonic arrival, as may
be seen by viewing an evolution from below the (x, y)-plane, as well as from above.

In all the following calculations we took x3(0) = x(0) = −4, since smaller values
merely produced a uniformly translating C2. Figure 2 shows the position of C2(16)
and C2(50) for y3(0) = y(0) = 2, U = 0.2, R = 2. Note the well-known shear straining
and wave steepening effect (t = 16) associated with the wavelet on C2. If contour
surgery were not used in this calculation the further development of this effect would
lead to long, thin, and dynamically negligible filaments (tips) winding continuously
around the eddy centre. Since this would either compromise the numerical resolution
or require excessive computational time, a ‘tip’ point in a filament was removed (and
C2 reconnected) if the distance between its two neighbours was too small (cf. Stern &
Radko 1998). This procedure can lead to a small (but systematic) increase in the area
bounded by C2, and in the total strength of its ω-vortices; and (as mentioned above)
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Figure 3. (a) Trajectories of piecewise-uniform vorticity eddies advected around an obstacle with
R = 2, U = 0.2 and various y3(0). (x3, y3) are the coordinates of the cyclonic point vortex of
the inner core. The plotted points on each trajectory do not necessarily correspond to equal time
intervals. The last plotted point for y3(0) = 1 corresponds to the strong interaction in figure 6(b),
and the last point for y3(0) = −3 corresponds to figure 5(b). (b) Same as in (a) except for a smaller
obstacle (R = 1).

we maintained vorticity compensation at every time step by resetting G = −ω times
the instantaneous area bounded by C2. At t = 16 (in figure 2) there is a small dipole
x3 − x = 0.015, but later on (t = 50), (when x3(50) = 5.187), the separation increases
to x3(50)− x(50) = 0.050. At this time the y3(t), x3(t) trajectory (figure 3) shows that
the entire eddy has acquired a nearly constant transverse velocity:

dy3

dt
≈ y3(56)− y3(46)

56− 46
=
−0.031− 0.521

10
= −0.0552. (4.1)

In order to compare this with the theoretical value (equation (1.2)) for an isolated
quasi-monopolar eddy, we use the average value of x3 − x from t = 46 to t = 56 to
obtain the mean dipole Dx = (0.050 + 0.058)/2 = 0.054, and substitution of this in
(1.2) yields a value

V =
0.054(−2)

2
= −0.054, (4.2)

in good agreement with (4.1). Thus we see how a ‘grazing’ incidence of the eddy
around an obstacle results in a systematic increase in the dipole moment (or in the
amplitude of the m = 1 azimuthal mode), thereby producing a finite scattering angle
between the mean path of the eddy at x� R and the mean field direction.

A smaller scattering angle is expected when y3(0) = y(0) is increased to 3.0, as
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Figure 4. Same as figure 2 except y3(0) = y(0) = 1. At this time (t = 12) the eddy interface is in
very close contact with the obstacle and the calculation is stopped (see text).
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Figure 5. (a) A ‘weak’ interaction for y3(0) = −3.5, U = 0.2, R = 2, t = 24. (b) A ‘strong’ interaction
for y3(0) = −3, U = 0.2, R = 2 is shown at three times. An essentially multi-connected domain
forms as the eddy bifurcates into two parts connected by a thin filament which could clearly be
removed (‘surgerized’).

is confirmed in figure 3. But when y3(0) = y(0) is decreased to 1.0 (figure 4) the
interaction is no longer weak, and the ‘head on’ collision which occurs at t = 12
is such that a significant fraction of C2 comes into very close contact with the
rigid boundary of the obstacle. Thus very large azimuthal velocities are subsequently
induced (not shown) on C2 due to the closeness of the ω images. Since our limited
resolution of the subsequent evolution gave a tangled (and meaningless) mass of
curves and filaments, the integration was stopped at t = 12; the subsequent evolution
of the strong interaction (figure 4) is beyond our present scope.

The interaction for negative y3(0) = y(0) = −3 is much stronger than for positive
y3(0) = +3, as may be seen from the respective trajectories in figure 3. The y3(0) = −3
interaction (figure 5b) is such that the eddy bifurcates into two essentially disconnected
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Figure 6. (a) y3(0) = 1.5, U = 0.2, R = 1. At the time of this figure the eddy has been advected far
downstream from the circular obstacle centred at (0, 0). At the time when x3 ≈ 0 (not shown) the
bottom of C2 is 0.02 above the top of the R = 1 obstacle (grazing incidence), but the subsequent
(x3 � 1) evolution is still ‘weak scattering’. (b) Same as (a) except y3(0) = 0. A ‘head on’ collision
occurs with C2 coming into very close contact with R = 1. (c) Same as previously except y3(0) = −2.0.
The cyclonic rotating eddy bifurcates in the lee of the obstacle.

domains, a topological change which falls into our definition of ‘strong interaction’.
On the other hand ‘weak’ scattering occurs (figure 5a) when y3(0) = y(0) is decreased
to −3.5. The far-field value of dy3/dt, computed from figure 3 also agreed with the
theoretical prediction (equation (4.2)) to 2%. Figure 3 implies that there is a critical
value of yc = |y3(0)| = |y(0)| above which weak scattering occurs; for R = 2, U = 0.2
the approximate value is yc ≈ 1.5 (for positive y3(0)), and yc ≈ 3.25 (for negative
yc(0)).

For a smaller R = 1, figures 3(b), 6(c) imply that yc is somewhat less than 1.5 for
y3(0) > 0, and somewhat less than −2.0 for y3(0) < 0. Aside from the quantitative
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R U y3(0) final x3 − x Comment

1 0.15 1.5 +0.060 @ t = 88, one eddy

* * * * *
1 0.075 1.5 ‘catastrophic’ collision;

close contact with obstacle @ t = 48, x3 = −0.28

1 0.20 1.5 +0.052 @ t = 60
2 0.20 2 +0.058 @ t = 56
2 0.20 3 +0.030 @ t = 92
2 0.20 1 catastrophic collision @ t = 16
2 0.20 −3.5 −0.27 @ t = 104, one eddy

* * * * *
2 0.20 −3.0 bifurcation into two eddies
1 0.20 −2.0 bifurcation into two eddies
0.5 0.20 −1.5 bifurcation into two eddies
1 0.20 0 catastrophic collision

Table 1. Parametric variation of scattering. The line of asterisks indicates the point of transition
from weak to strong scattering.

difference between R = 2 and R = 1, figure 6 shows the similar topological regimes
in the two cases, namely weak scattering (figure 6a), head on collision (figure 6b), and
bifurcation (figure 6c). The summary table 1 shows that a strong interaction occurs
even for R = 0.5.

5. The centroid invariance theorem for baroclinic eddies
For reasons mentioned in the introduction, we conclude by deriving a new centroid

invariance theorem for quasi-geostrophic baroclinic eddies. Consider a two-layer
density model bounded by rigid and flat upper and lower boundaries, and with
an intervening density interface. Let H1 denote the mean thickness of the upper
layer (density ρ), H2 the mean thickness of the lower layer (density ρ + ∆ρ), and
h(x, y, t) the upward displacement of the interface from its undisturbed position.
In the limit when |h|/H1 � 1, and when the Rossby number is equally small, we
obtain the well known quasi-geostrophic (QG) approximation (Stern 1975). If f is
the (constant) Coriolis parameter, and [ω1(x, y, t), ω2] denotes the respective values
of relative vorticity (∂v/∂x− ∂u/∂y) in each layer, then the QG ‘potential vorticities’
defined by

P1 =
ω1(x, y, t)

f
+

h

H1

, P2 =
ω2

f
− h

H2

(5.1a, b)

are conserved with respect to non-divergent horizontal velocity (u, v) in each layer, i.e.
∂u/∂x+ ∂v/∂y = 0. For a shielded eddy (far-field (x, y) velocities smaller than order
(x2 + y2)−1/2) we then obtain∫∫ +∞

−∞
v1ω1dx dy ≡

∫∫ +∞

−∞
v1

(
∂v1

∂x
− ∂u1

dy

)
dx dy = 0, (5.2a)

and ∫∫ +∞

−∞
v2ω2dx dy = 0. (5.2b)
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When (5.1a) is multiplied by H1v1, and (5.1b) is multiplied by H2v2, and when (5.2a, b)
are used we get

I ≡
∫∫

dx dy(H1v1P1 +H2v2P2) =

∫∫
dx dy(v1h− v2h). (5.3)

Since the motion is geostrophic and hydrostatic, the ‘thermal wind’ (Margules Rela-
tion) equation is

v1 − v2 =
(g∆ρ/ρ)

f

∂h

∂x
,

where g is gravity. Equation (5.3) therefore reduces to I = 0, or, equivalently

I =

∫∫
dσH1P1

(
dy1

dt

)
+

∫∫
dσH2P2

(
dy2

dt

)
= 0,

where v1 and v2 have been written as Lagrangian derivatives and dσ = dx dy.
A material column in each layer not only conserves P , but also, according to the

QG approximation, conserves its cross-sectional area (dσ). Therefore we may take the
time derivative in the above equation outside the integral to obtain

∂

∂t

[∫∫ +∞

−∞
dσH1P1y1 +

∫∫ +∞

−∞
dσH2P2y2

]
= 0,

or

0 =
∂

∂t

∫∫ +∞

−∞
dx dy(H1P1 +H2P2)y =

∂

∂t

∫∫
dx dy(H1ω1 +H2ω2)y, (5.4)

where (5.1a, b) have been used. Therefore the centroid of the barotropic component
of the relative vorticity, i.e. the vertically integrated part of the total baroclinic flow
is invariant if there are no external boundary forces. Thus we see that even when a
deep bottom layer has a relatively small |ω2|, this layer can exert a control on the
entire baroclinic evolution because H2 � H1. The question then arises as to whether
a finite integral value of (H1ω1 + H2ω2)y in an otherwise circularly symmetric eddy
can be generated if it is advected towards a sea mount in the bottom layer.

6. Conclusion
We have considered a compact (shielded) two-dimensional eddy consisting of

negative (say) vorticity in an outer annulus, and compensating positive vorticity in
an inner domain. The separation of the centroids of the two vorticity domains is
known to be independent of time unless external forces, such as is due to topographic
pressure, are present. We have shown that if a circularly symmetric eddy, initially
at x = −∞, is advected by uniform current (U) towards an obstacle of radius R
(centred at x = 0), then the centroid of the negative (say) vortices in the outer part of
the eddy is displaced from the centroid of the positive interior vortices. For ‘grazing’
incidence (weak scattering) the eddy is advected around the obstacle and emerges far
downstream with a small dipole moment which allows the eddy to maintain a velocity
normal to the free stream.

A ‘head-on collision’ occurs when the magnitude of the initial y-distance between
the centre of the eddy and the (nearest) topographic extremum (y = ±R) is less than
a critical value, an estimate of which has been given. Such a strong interaction results
in a topological change of the eddy, as implied by figures 4, 6 or by figures 5(b), 6(b).
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The extension to the more realistic oceanic case of a rotating fluid with multiple
density layers is suggested by the generalization (§ 5) which shows that the centroid
of the barotropic (vertically integrated) vorticity is invariant when external forces are
absent. When a sea mount and a basic current are added to this problem, we expect
that finite value of the ‘invariant’ will be generated by the pressure exerted by the
eddy on the obstacle. Of course if the eddy has a finite initial dipole moment, then
this may be increased by the encounter.

Partial support by NSF grants OCE9529261 and OCE9726584 is gratefully ac-
knowledged.
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